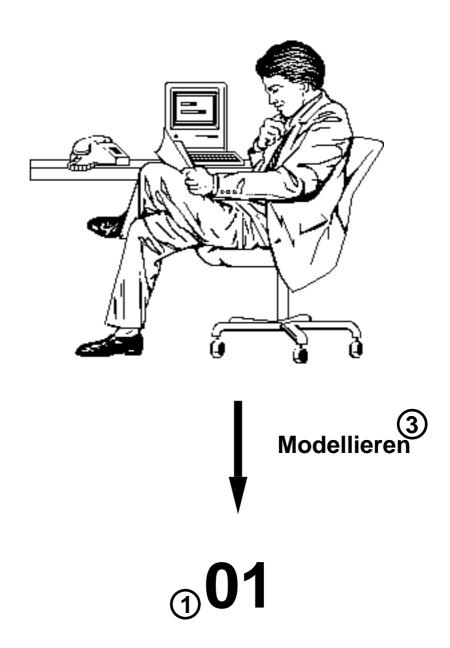
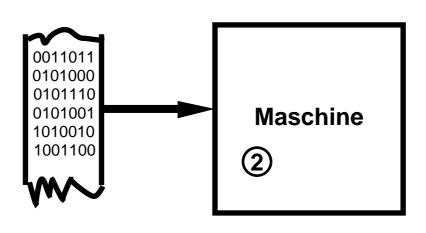
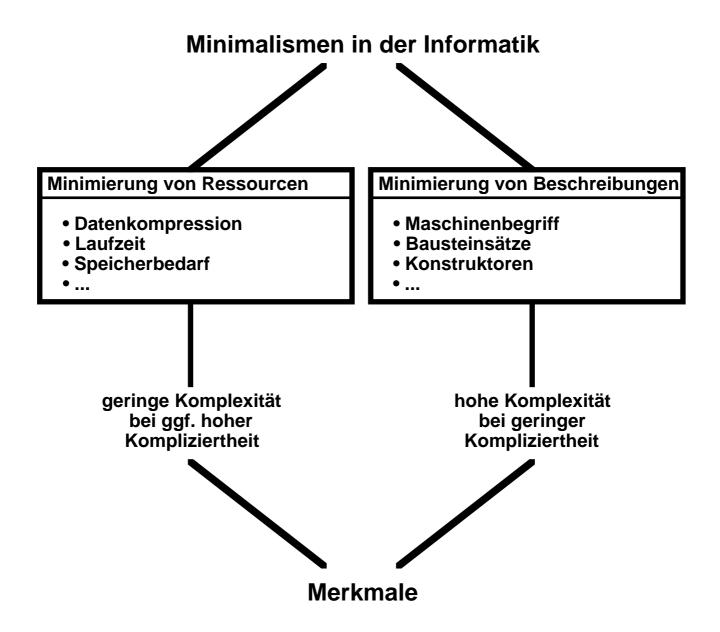
Minimalismus in der Informatik einfache Konzepte maximale Komplexität und Vielfalt


Andreas Schwill


Institut für Informatik Universität Potsdam


Überblick

- Einstieg
- Maschinenbegriff
- Bausteinsätze
- Modellierung
- Phantasien zu Komplexität und Kompliziertheit

1 Einstieg

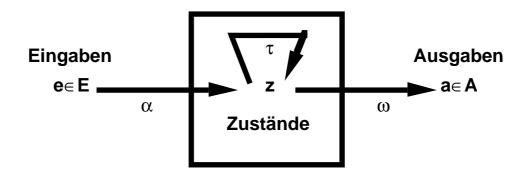
Komplexität

Unüberschaubarkeit der generierten Struktur

Kompliziertheit

• Unüberschaubarkeit der Beschreibung der Struktur

2 Maschinenbegriff


Zielvorstellung [Minsky, Thue, Church, Turing, ...]

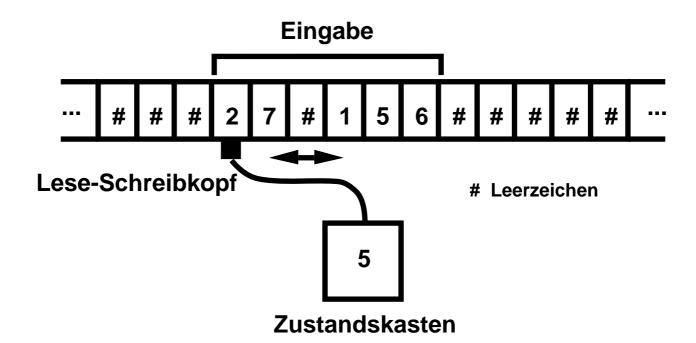
- Wie läßt sich das Wesen eines Automaten/einer Maschine erfassen?
- Was sind die Minimalmerkmale, die eine Maschine/ein Automat besitzen muß, um Maschine/Automat genannt werden zu können?

Definitionen

- künstliche Verbindungen widerstandsfähiger Körper, vermöge deren mechanische Kräfte genötigt werden, unter gewissen Bedingungen bestimmte Bewegungen zu bewirken ... [Brockhaus 1924]
- Vorrichtung, die nach dem Einrichten und Beschicken vorbestimmte Handlungen nach einem Auslöseimpuls selbständig und zwangsläufig, unter Umständen auch überwacht und geregelt, auf mechanischem, elektrischem, hydraulischem, pneumatischem Wege ablaufen läßt ... [Meyers 1971]
- 3) Vorrichtung, mit der eine zur Verfügung stehende Energieform in eine andere, für einen bestimmten Zweck geeignete Form umgewandelt wird ... [Meyers 1975]
- 4) jedes Gerät, jede Vorrichtung, jedes System, das einen bestimmten Input (bzw. bestimmte Typen von Inputs) in einen bestimmten Output (bzw. bestimmte Typen von Outputs) verarbeitet ... [Klaus 1971]

Allgemeines Automatenmodell:

Problem: keine Einschränkungen an α , τ , ω .


Folglich:

- auf "Machbares" einschränken
- aber nichts "Machbares" wegschneiden

Beispiel für einen Automaten, bei dem die Freiheiten auf genau das "Machbare" eingeschränkt sind:

Turingmaschine [A.M. Turing 1936]

Aufbau

nachher

		1140111101			
Zustand	Band	Zustand	Band	Kopf	
1	#	2	1	L	
1	2	1	3	R	
17	1	S	2	L	

vorher

Turingtafel

Beispiele:

[Quelle für Turing-Simulator:

http://math.hws.edu/TMCM/programs/xTuringMachine.hqx]

- 1) Addition zweier Dualzahlen
- 2) Sortieren

Theoretisches Ergebnis:

Die Turingmaschine ist DAS Modell eines Automaten: Sie kann alles, was ein Automat überhaupt können kann, aber nicht mehr.

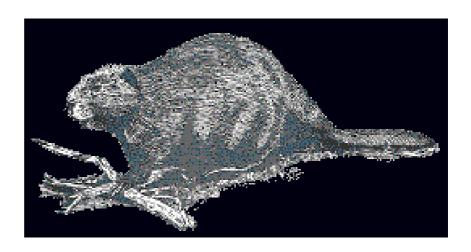
Churchsche These:

Jede intuitiv berechenbare Funktion ist auch Turing-berechenbar und umgekehrt.

Überlegungen zur Minimalisierung:

- Wieviele Bandsymbole braucht man? -> max. 2
- Wieviele Schritte werden benötigt?
- ___
- Wieviele Zustände benötigt man?

Busy-Beaver-Turingmaschine: Beispiel für die Komplexität des Maschinenmodells



Gegeben

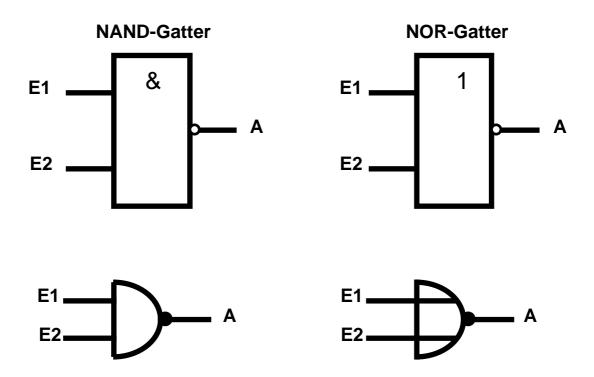
- Anzahl n der Zustände
- Bandalphabet {|,#}
- leeres Band

Gesucht

 Turingmaschine, die irgendwann stoppt und zugleich möglichst viele Striche auf das Band schreibt

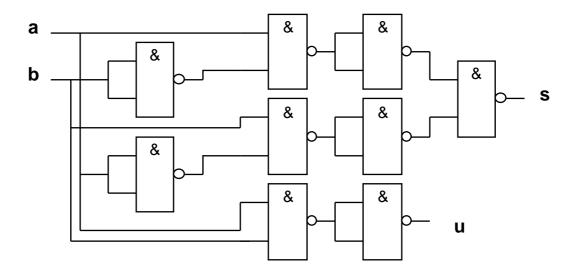
Beispiele:

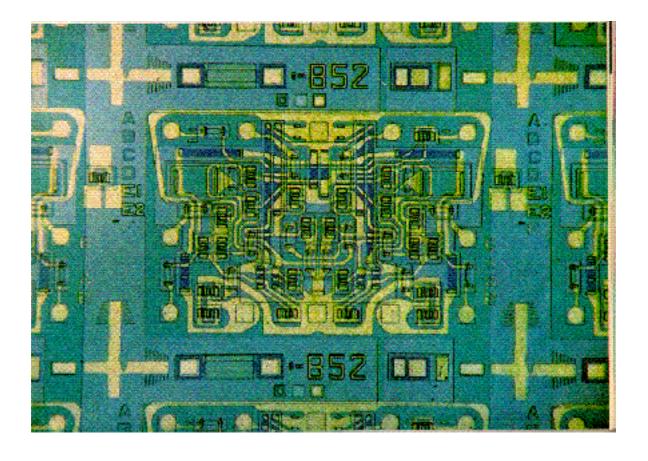
Zustände	Striche	Schritte
Busy Beaver 3	6	11
Busy Beaver 4	13	107
Busy Beaver 5	≥4098	47176870
Administration	0	67
Beaver		
Scientific Beaver	1	187
Government	???	2.000.000.000
Beaver		


3 Bausteinsätze

Wie baut man Maschinen?

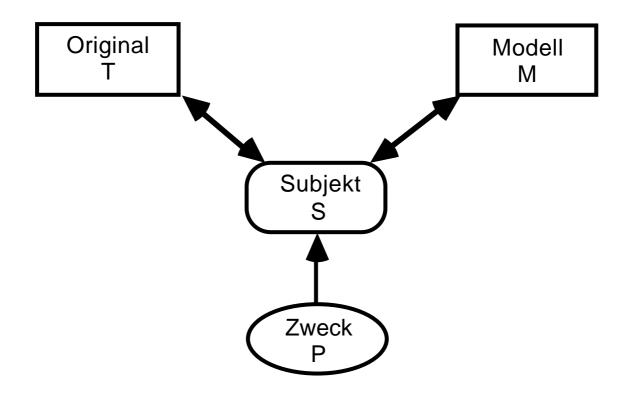
Ziel: möglichst wenige Bausteine


Einzigartiges Ergebnis in der Informatik:


EIN Baustein reicht aus:

Realisierung durch etwa 10 elektron. Bauelemente, wie Transistoren, Widerstände

Beispiel: Addierer



4 Modellierung

Schaffen künstlicher Welten (im Rechner), die sich so verhalten wie ihre Vorbilder.

Was ist Modellbildung?

Wie bildet man reale Welten im Rechner ab?

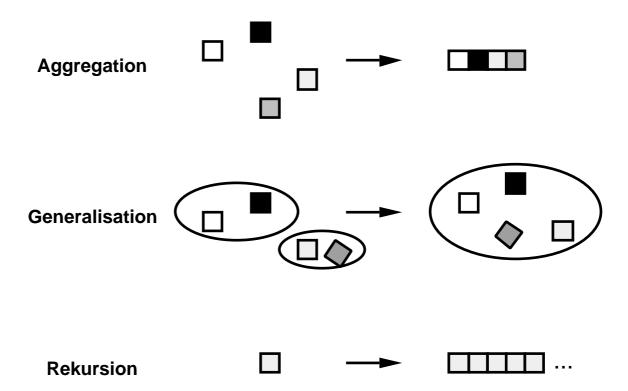
Zwei Teilaspekte:

- Gegenstände --> Datenstrukturen einer Programmiersprache
- Abläufe --> Kontrollstrukturen einer Programmiersprache
- -> Zwei schöne Minimalsysteme

Idee: Baukastenprinzip mit wenigen einfachen Grundbausteinen, wenigen einfachen Kombinationsregeln, aber beliebige Anwendung der Regeln ("komplex, aber nicht kompliziert")

Modellierung von Daten

Also: Baukasten = (Elementare Datentypen; Konstruktoren)

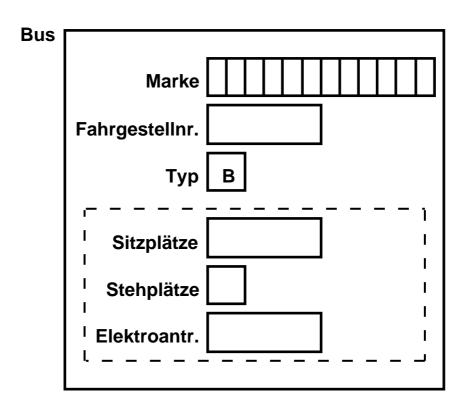

Datenstrukturbaukasten=

int, ganze Zahlen

real, Dezimalzahlen

bool, Wahrheitswerte wahr, falsch

char; Zeichen a,b,c, Semikolon, Komma, ...


Modellierung ("Verdatung") der gesamten realen Welt durch den obigen Baukasten

Beispiele:

1) Fahrzeuge=Pkw \cup Lkw \cup Bus

Pkw	
	Marke Fahrgestellnr.
	Sitzplätze Frontantrieb Hubraum Leistung

Lkw	
	Marke
	Fahrgestellnr.
	Тур L
	zul. Gewicht
	Achszahl
	l Höhe
	'

2)	Autoschlangen	= Folgen	von Fahrzeuge	'n
----	---------------	----------	---------------	----

Schlange = $\varepsilon \cup$ Fahrzeug Schlange

Beispielschlange

Modellierung von Abläufen

Baukasten = (elementare Abläufe; Konstruktoren)

Elementarer Ablauf:

Variable := Ausdruck über Objekte mit Grundoperationen

Konstruktoren:

• Hintereinanderausführung

,

Beispiel: Telefonhörer abnehmen; Nummer wählen

• bedingte Anweisung

wenn ... dann ... sonst ... ende

Beispiel: wenn 12:00 Uhr dann Pause machen sonst weiterschlafen ende

• bedingte Schleife

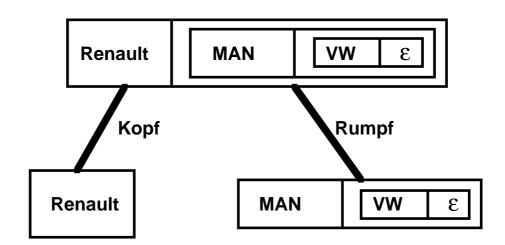
solange ... tue ... ende

Beispiel: solange Auto schmutzig tue putzen

Modellierung aller maschinisierbaren Abläufe (-> Turingmaschine) durch den obigen Baukasten

Beispiel: Wieviele Fahrzeuge befinden sich in der Autoschlange s?

```
n:=0;


solange s≠ε tue

s:=Rumpf(s);

n:=n+1

ende;

Ausgabe n.
```


5 Phantasien zu Komplexität und Kompliziertheit

Komplexität	Kompliziertheit	
Unüberschaubarkeit von	Unüberschaubarkeit der	
Strukturen	Beschreibung von Strukturen	
Bedingung hochentwickelter	Maß für die Einfachheit	
Systeme	der Beschreibung	
Organismen	• des Managements	
Gesellschaften	der Beherrschung	
Verwaltungen	von Komplexität	
Steigerung der Leistungs-	geringe Effizienz	
fähigkeit -> Steigerung der	hoher Ressourcenverbrauch	
Komplexität	geringe Überlebenschancen	
• Reduktion der Komplexität ->	im Wettbewerb	
Reduktion der Leistungs-	geringe Verständlichkeit und	
fähigkeit	Einflußnahme	
	Machtakkumulation und	
	-erhaltung	
Ethischer Imperativ: Verhalte	Reduktion der Selbstbestim-	
Dich stets so, daß sich die Zahl	mung/Entscheidungsfreiheit	
der Alternativen erhöht		
	Subsidiaritätsprinzip	
	• Lean Management	
	Outsourcing	
	Deregulierung	
	Profit Center	
	Management by Objectives	

Beispiele: • Steuerverwaltung

• Bauordnungsrecht

• Rentenversicherung

• Krankenversicherung